【www.nrpn.net--成功的名言】

初中数学解题技巧一:初中数学解题技巧分析

  数学知识正是数学解题思维活动的出发点与凭借。丰富的知识并加以优化的结构能为题意的本质理解与思路的迅速寻找创造成功的条件。下面是小编为大家带来的初中数学解题技巧分析,欢迎阅读。
  初中数学解题技巧分析
  1.如果把解题比做打仗,那么解题者的“兵器”就是数学基础知识,“兵力”就是数学基本方法,而调动数学基础知识、运用数学思想方法的数学解题思想则正是“兵法”。
  2.数学家存在的主要理由就是解决问题。因此,数学的真正的组成部分是问题和解答。“问题是数学的心脏”。
  3.问题反映了现有水平与客观需要的矛盾,对学生来说,就是已知和未知的矛盾。问题就是矛盾。对于学生而言,问题有三个特征:
  (1)接受性:学生愿意解决并且具有解决它的知识基础和能力基础。
  (2)障碍性:学生不能直接看出它的解法和答案,而必须经过思考才能解决。
  (3)探究性:学生不能按照现成的的套路去解,需要进行探索,寻找新的处理方法。
  4.练习型的问题具有教学性,它的结论为数学家或教师所已知,其之成为问题仅相对于教学或学生而言,包括一个待计算的答案、一个待证明的结论、一个待作出的图形、一个待判断的命题、一个待解决的实际问题。
  5.“问题解决”有不同的解释,比较典型的观点可归纳为4种:
  (1)问题解决是心理活动。面临新情境、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理办法的一种活动。
  (2)问题解决是一个探究过程。把“问题解决”定义为“将先前已获得的知识用于新的、不熟悉的情境的过程”。这就是说,问题解决是一个发现的过程、探索的过程、创新的过程。
  (3)问题解决是一个学习目的。“学习数学的主要目的在于问题解决”。因而,学习怎样解决问题就成为学习数学的根本原因。此时,问题解决就独立于特殊的问题,独立于一般过程或方法,也独立于数学的具体内容。
  (4)问题解决是一种生存能力。重视问题解决能力的培养、发展问题解决的能力,其目的之一是,在这个充满疑问、有时连问题和答案都是不确定的世界里,学习生存的本领。
  6.解题研究存在一些误区,首先一个表现是,用现成的例子说明现成的观点,或用现成的观点解释现成的例子。其次一个表现是,长期徘徊在一招一式的归类上,缺少观点上的提高或实质性的突破。第三个表现是,多研究“怎样解”,较少问“为什么这样解”。在这些误区里,“解题而不立法、作答而不立论”。
  7.人的思维依赖于必要的知识和经验,数学知识正是数学解题思维活动的出发点与凭借。丰富的知识并加以优化的结构能为题意的本质理解与思路的迅速寻找创造成功的条件。解题研究的一代宗师波利亚说过:“货源充足和组织良好的知识仓库是一个解题者的重要资本”。
  8.熟练掌握数学基础知识的体系。对于中学数学解题来说,应如数学家珍说出教材的概念系统、定理系统、符号系统。还应掌握中学数学竞赛涉及的基础理论。深刻理解数学概念、准确掌握数学定理、公式和法则。熟悉基本规则和常用的方法,不断积累数学技巧。
  9.数学的本质活动是思维。思维的对象是概念,思维的方式是逻辑。当这种思维与新事物接触时,将出现“相容”和“不容”的两种可能。出现“相容”时,产生新结果,且被原概念吸收,并发展成新概念;当出现“不容”时,则产生了所谓的问题。这时,思维出现迂回,甚至暂时退回原地,将原概念扩大或将原逻辑变式,直到新思维与事物相容为止。至此,也产生新的结果,也被原思维吸收。这就是一个思维活动的全过程。
  10.解题能力,表现于发现问题、分析问题、解决问题的敏锐、洞察力与整体把握。其主要成分是3种基本的数学能力(运算能力、逻辑思维能力、空间想象能力),核心是能否掌握正确的思维方法,包括逻辑思维与非逻辑思维。其基本要求包括:
  (1)掌握解题的科学程序;
  (2)掌握数学中各种常用的思维方法,如观察、试验、归纳、演绎、类比、分析、综合、抽象、概括等;
  (3)掌握解题的基本策略,能“因题制宜”地选择对口的解题思路,使用有效的解题方法、调动精明的解题技巧;
  (4)具有敏锐的直觉。应该明白,我们的数学解题活动是在纵横交错的数学关系中进行的,在这个过程中,我们从一种可能性过渡到另一种可能性时,并非对每一个数学细节都洞察无遗,并非总能借助于“三段论”的桥梁,而是在短时间内朦胧地插上幻想的翅膀,直接飞翔到最近的可能性上,从而达到对某种数学对象的本质领悟:
  11.解题具有实践性与探索性的特征,“就像游泳,滑雪或弹钢琴一样,只能通过模仿和实践来学到它……你想学会游泳,你就必须下水,你想成为解题的能手,你就必须去解题”,“寻找题解,不能教会,而只能靠自己学会”。
  12.所谓解题经验,就是某些数学知识、某些解题方法与某些条件的有序组合。成功是一种有效的有序组合,失败是一种无效的无序组合(它从反面向我们提供有效的有序组合)。成功经验所获得的有序组合,就好像建筑上的预制构件(或称为思维组块),遇到合适的场合,可以原封不动地把它搬上去。
  13.认为解题纯粹是一种智能活动显然是错误的;决心与情绪所起的作用非常重要。教育学生解题是一种意志教育。当学生求解那些对他来说并不太容易的题目时,他学会了败而不馁,学会了赞赏微小的进展,学会了等待主要念头的萌动,学会了当主要念头出现后如何全力以赴,直扑问题的核心或主干;当一旦突破关卡,如何去占领问题的至高点,并冷静地府视全局,从而得到问题的完善解决。如果学生在解题过程中没有机会尝尽为求解而奋斗的喜怒哀乐,那么他的数学解题训练就在最重要的地方失败了。
  14.教师的例题教学要暴露自己思维的真实过程,老师备课时,遇上的曲折和错误不能随草纸扔到废纸堆。如果教师掩瞒了解题中的曲折,自己在讲台装神弄巧,得心应手,左右逢源,把自己打扮成超人,将给学生的学习产生误导。这样的教师越高明,学生越自卑。

初中数学解题技巧二:数学中考常见的解题方法有哪些


  要想在数学考试中取得好成绩,掌握一些好的解题方法是非常重要的。下面是小编为你搜集到的数学中考常见的解题方法,欢迎阅读。
  数学中考常见的解题方法
  1、配方法:
  所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
  2、因式分解法:
  因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
  3、换元法:
  换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
  4、判别式法与韦达定理:
  一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
  5、待定系数法:
  在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。
  6、构造法:
  在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
  数学中考压轴的解题方法
  1、以坐标系为桥梁,运用数形结合思想
  纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
  2、以直线或抛物线知识为载体,运用函数与方程思想
  直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
  3、利用条件或结论的多变性,运用分类讨论的思想
  分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
  数学中考常见的应试技巧
  1、审题和解题的关系:克服对审题重视不够,匆匆一看急于下笔的不严谨做法,要吃透题目的条件与要求,更要挖掘题目中隐含条件,达到启发解题思路。只有耐心仔细地审题,准确地把握题目中的关键词才能从中获取尽可能多的信息,才能迅速找准解题方向。
  2、“会做”与“得分”的关系:要将你的解题思路转化为得分点,主要靠准确、完整的推理和精确、严密的计算,要克服卷面上大量出现的“会而不对”、“对而不全”的情况。只有重视解题过程的严密推理和精确计算,“会做”的题才能“得分”。
  3、快与准的关系:在目前题量大、时间紧的情况下,“准”字尤为重要。而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点,准一点,可多得一点分;相反,快一点,错一片,花了时间还得不到分。
  4、难题与容易题的关系:做中考试题要按先易后难,先简后繁的顺序作答,要合理安排时间,不要在某个卡住的题上打“持久战”,这样会造成既耗费时间又拿不到分,会做的题目又被耽误了的严重后果。把会做的题目先做完,再去攻不会做的题,这样既能得分,又能产生心理上的胜利效果,平静下来再做难题可能就迎刃而解了。
  总的时间分配因人而异,比如选择和填空题,对于中档水平以下的同学可以适当多用一点儿时间,在这个地方尽可能的拿分。对于水平比较高的同学,选择和填空题不能费时太多,不然解答大题就会感到时间紧张。但总的原则是以准确为主。我们首先要将三部分的容易题先拿下来,以兴奋自己的情绪,稳定自己的心态,进入考试的状态。当你的心态比较平稳,感到旁若无人的时候,你的水平才能够正常的发挥。这时候过去的各种经验才能派上用场。如果一开考就在难题的地方打转,往往会影响情绪,焦躁不安,使大脑受到抑制,使本来会做的题目也会出现问题。因此要尽量避免这种情况的发生。
猜你还喜欢:
1.高考数学答题应试技巧有哪些
2.高考数学常考题型有什么
3.初中语文考试答题方法有哪些
4.MBA数学考试的解题技巧有哪些
5.高考数学选择题解题技巧有哪些

初中数学解题技巧三:初中数学圆的知识点及解题技巧

  初中数学几何中圆是比较重要的一部分,下面给大家总结了,小编总结和初中数学圆解题技巧,来看看吧!
  初三数学圆知识点总结
  一、圆的相关概念
  1、圆的定义
  在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
  2、直线圆的与置位关系
  1.线直与圆有唯公一共时,点做直叫与圆线切
  2.三角的外形圆接的圆叫做三心形角外心
  3.弦切角于所等夹弧所对的的圆心角
  4.三角的内形圆切的圆叫做三心形角内心
  5.垂于直径半直线必为圆的的切线
  6.过径半外的点并且垂直端于半的径直线是圆切线
  7.垂于直径半直线是圆的的切线
  8.圆切线垂的直过切于点半径
  3、圆的几何表示
  以点O为圆心的圆记作“⊙O”,读作“圆O”
  二、垂径定理及其推论
  垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
  推论1:
  (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
  (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
  (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
  推论2:圆的两条平行弦所夹的弧相等。
  垂径定理及其推论可概括为:
  过圆心
  垂直于弦
  直径 平分弦 知二推三
  平分弦所对的优弧
  平分弦所对的劣弧
  三、弦、弧等与圆有关的定义
  1、弦
  连接圆上任意两点的线段叫做弦。(如图中的AB)
  2、直径
  经过圆心的弦叫做直径。(如途中的CD)
  直径等于半径的2倍。
  3、半圆
  圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
  4、弧、优弧、劣弧
  圆上任意两点间的部分叫做圆弧,简称弧。
  弧用符号“⌒”表示,以A,B为端点的弧记作“ ”,读作“圆弧AB”或“弧AB”。
  大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)
  四、圆的对称性
  1、圆的轴对称性
  圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
  2、圆的中心对称性
  圆是以圆心为对称中心的中心对称图形。
  五、弧、弦、弦心距、圆心角之间的关系定理
  1、圆心角
  顶点在圆心的角叫做圆心角。
  2、弦心距
  从圆心到弦的距离叫做弦心距。
  3、弧、弦、弦心距、圆心角之间的关系定理
  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
  推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
  六、圆周角定理及其推论
  1、圆周角
  顶点在圆上,并且两边都和圆相交的角叫做圆周角。
  2、圆周角定理
  一条弧所对的圆周角等于它所对的圆心角的一半。
  推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
  推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
  推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
  七、点和圆的位置关系
  设⊙O的半径是r,点P到圆心O的距离为d,则有:
  d
  d=r 点P在⊙O上;
  d>r 点P在⊙O外。
  八、过三点的圆
  1、过三点的圆
  不在同一直线上的三个点确定一个圆。
  2、三角形的外接圆
  经过三角形的三个顶点的圆叫做三角形的外接圆。
  3、三角形的外心
  三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
  4、圆内接四边形性质(四点共圆的判定条件)
  圆内接四边形对角互补。
  九、反证法
  先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。
  十、直线与圆的位置关系
  直线和圆有三种位置关系,具体如下:
  (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;
  (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,
  (3)相离:直线和圆没有公共点时,叫做直线和圆相离。
  如果⊙O的半径为r,圆心O到直线l的距离为d,那么:
  直线l与⊙O相交 d
  直线l与⊙O相切 d=r;
  直线l与⊙O相离 d>r;
  十一、切线的判定和性质
  1、切线的判定定理
  经过半径的外端并且垂直于这条半径的直线是圆的切线。
  2、切线的性质定理
  圆的切线垂直于经过切点的半径。
  十二、切线长定理
  1、切线长
  在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
  2、切线长定理
  从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
  十三、圆和圆的位置关系
  1、圆和圆的位置关系
  如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
  如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
  如果两个圆有两个公共点,那么就说这两个圆相交。
  2、圆心距
  两圆圆心的距离叫做两圆的圆心距。
  3、圆和圆位置关系的性质与判定
  设两圆的半径分别为R和r,圆心距为d,那么
  两圆外离 d>R+r
  两圆外切 d=R+r
  两圆相交 R-r
  两圆内切 d=R-r(R>r)
  两圆内含 dr)
  4、两圆相切、相交的重要性质
  如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
  十四、三角形的内切圆
  1、三角形的内切圆
  与三角形的各边都相切的圆叫做三角形的内切圆。
  2、三角形的内心
  三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
  十五、与正多边形有关的概念
  1、正多边形的中心
  正多边形的外接圆的圆心叫做这个正多边形的中心。
  2、正多边形的半径
  正多边形的外接圆的半径叫做这个正多边形的半径。
  3、正多边形的边心距
  正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
  4、中心角
  正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
  十六、正多边形和圆
  1、正多边形的定义
  各边相等,各角也相等的多边形叫做正多边形。
  2、正多边形和圆的关系
  只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
  十七、正多边形的对称性
  1、正多边形的轴对称性
  正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。
  2、正多边形的中心对称性
  边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。
  3、正多边形的画法
  先用量角器或尺规等分圆,再做正多边形。
  十八、弧长和扇形面积
  1、弧长公式
  n°的圆心角所对的弧长l的计算公式为
  2、扇形面积公式
  其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。
  3、圆锥的侧面积
  其中l是圆锥的母线长,r是圆锥的地面半径。
  初中数学圆解题技巧
  半径与弦长计算,弦心距来中间站。
  圆上若有一切线,切点圆心半径连。
  切线长度的计算,勾股定理最方便。
  要想证明是切线,半径垂线仔细辨。
  是直径,成半圆,想成直角径连弦。
  弧有中点圆心连,垂径定理要记全。
  圆周角边两条弦,直径和弦端点连。
  弦切角边切线弦,同弧对角等找完。
  要想作个外接圆,各边作出中垂线。
  还要作个内接圆,内角平分线梦圆。
  如果遇到相交圆,不要忘作公共弦。
  内外相切的两圆,经过切点公切线。
  若是添上连心线,切点肯定在上面。
  要作等角添个圆,证明题目少困难。
  辅助线,是虚线,画图注意勿改变。
  假如图形较分散,对称旋转去实验。

本文来源:http://www.nrpn.net/73022.html